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Abstract

A comprehensive mixed-solvent electrolyte model has been applied to calculate phase equilibria and other thermodynamic properties of
multicomponent solutions containing salts, acids and bases in wide concentration ranges. The model combines an excess Gibbs energy model
with detailed speciation calculations. The excess Gibbs energy model consists of a long-range interaction contribution represented by the
Pitzer–Debye–Hückel expression, a short-range term expressed by the UNIQUAC model and a middle-range term of a second-virial-coefficient
type for specific ionic interactions. The model accurately represents the thermodynamic behavior of systems ranging from infinite dilution in
water to molten salts or pure acids at temperatures from the freezing point to 300◦C. It has been determined that a physically realistic treatment
of speciation is important for the simultaneous representation of vapor–liquid equilibria, osmotic coefficients, solid–liquid equilibria, pH,
enthalpies of dilution and heat capacities.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Development of models for electrolyte systems is an
important subject of research in applied thermodynam-
ics because of the considerable role that electrolytes play
in separation processes, environmental applications, pro-
duction of energy sources, electrochemical processes, hy-
drometallurgy and other applications. Various models for
electrolyte solutions have been recently reviewed by Ze-
maitis et al. [1], Pitzer [2], Rafal et al. [3], Loehe and
Donohue[4] and Anderko et al.[5]. A characteristic fea-
ture of electrolyte systems is the fact that phase equilibria
and other thermodynamic properties are often inextricably
linked to speciation equilibria, which may be due to ion
pairing, acid–base reactions, complexation and other phe-
nomena. For many applications, speciation-related proper-
ties such as pH, oxidation-reduction potential, distribution
of complexed or hydrolyzed species, etc., are of primary
importance. Also, speciation can have a significant effect on
phase equilibria, such as the solubility of salts in multicom-
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ponent systems. Recently, a new thermodynamic model has
been developed for the simultaneous computation of spe-
ciation, phase equilibria, caloric and volumetric properties
of mixed-solvent electrolyte solutions[6]. This model was
shown to reproduce the properties of electrolytes in organic
or mixed (organic–water) solvents, selected salts from infi-
nite dilution to the fused salt limit and various completely
miscible inorganic systems (such as acid–water mixtures)
over a full concentration range.

In this study, we apply this model to multicomponent in-
organic systems such as those containing two salts and wa-
ter or a salt, an acid and water in wide concentration ranges
that reach the limit of no water. In particular, we focus on
systems that are complex because of the formation of mul-
tiple hydrated salts, double salts or the presence of eutectic
points or congruently melting solid phases. Further, we ex-
amine the effect of speciation equilibria on the simultaneous
representation of phase equilibria and caloric properties.

2. Thermodynamic framework

In a previous paper[6], a thermodynamic framework
has been established by combining an excess Gibbs energy
model for mixed-solvent electrolyte systems with a compre-
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hensive treatment of chemical equilibria. In this framework,
the excess Gibbs energy is expressed as
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whereGex
LR represents the contribution of long-range elec-

trostatic interactions,Gex
SR is the short-range contribution re-

sulting from intermolecular interactions, and an additional
(middle-range) termGex

MR represents primarily ionic interac-
tions (i.e. ion/ion and ion/molecule) that are not accounted
for by the long-range term. The rationale and derivation of
Eq. (1)was discussed in detail by Wang et al.[6]. Here, we
summarize the basic features of the model.

The long-range interaction contribution is calculated from
the Pitzer–Debye–Hückel formula[7,8] expressed in terms
of mole fractions and symmetrically normalized, i.e.
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where the sum is over all species,Ix is the mole
fraction-based ionic strength,I0

x,i represents the ionic
strength when the system composition reduces to a pure
componenti, i.e.I0
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where ds and εs are the molar density and the dielectric
constant of the solvent, respectively. The dielectric constant
is calculated from an expression developed previously for
mixed solvents[9].

For the short-range interaction contribution, the UNI-
QUAC equation[10] is used. The middle-range interaction
contribution is calculated from an ionic strength-dependent,
symmetrical second-virial-coefficient-type expression[6]:
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whereBij(Ix) = Bji(Ix), Bii = Bjj = 0 and the ionic strength
dependence ofBij is given by

Bij(Ix) = bij + cij exp(−
√

Ix + a1) (5)

wherebij andcij are adjustable parameters anda1 is set equal
to 0.01. In general, the parametersbij andcij are calculated
as functions of temperature as

bij = b0,ij + b1,ijT + b2,ij

T
(6)

cij = c0,ij + c1,ijT + c2,ij

T
(7)

The functions (6) and (7) have been found to be more ef-
fective for reproducing experimental data than the originally

proposed temperature dependence of the middle-range term
[6]. In practice, the middle-range parameters are used to
represent ion–ion and ion–neutral molecule interaction. The
short-range parameters are used primarily for interaction be-
tween neutral molecules.

To account for speciation, the chemical effects due to
the formation of ion pairs and complexes are explicitly
taken into account using chemical equilibria. Also, the
same chemical equilibrium formalism is used to calculate
solid–liquid equilibria. For this purpose, the standard-state
chemical potentialµ0

i needs to be computed for all species
together with the activity coefficients. For solids, the values
of µ0

i are calculated using the reference-state Gibbs energy
of formation, entropy and heat capacity according to stan-
dard thermodynamic relationships. For aqueous species, the
standard-state chemical potentials are calculated as func-
tions of temperature and pressure using a comprehensive
model developed by Helgeson et al. (commonly referred
to as the Helgeson–Kirkham–Flowers equation of state
[11]). The parameters of this model are available for a
large number of aqueous species including ions, associated
ion pairs, and neutral species[12–15]. It should be noted
that standard-state property data and the model of Helge-
son et al. are based on the infinite-dilution reference state
and on the molality concentration scale. At the same time,
the activity coefficient model is symmetrically normalized
and is expressed in terms of mole fractions. To make the
two reference systems consistent, the activity coefficients
calculated fromEq. (1) are converted to those based on
the unsymmetrical reference state, i.e. at infinite dilution
in water, as described by Wang et al.[6]. At the same
time, the molality-based standard-state chemical potential is
converted to a corresponding mole fraction-based quantity.

A similar procedure is used for enthalpy and heat capacity
calculations. In the unsymmetrical normalization, the total
enthalpy is expressed as

h =
∑

i

xih
∗
i + hex,∗ (8)

where h∗
i is the standard-state partial molar enthalpy of

speciesi, which can be computed from the Helgeson–
Kirkham–Flowers equation andhex,∗ is the excess molar
enthalpy, which is calculated by differentiating the excess
Gibbs energy with respect to temperature and taking into
account the change of speciation with temperature[6]. Heat
capacities are found by differentiating the enthalpy (Eq. (8))
with respect to temperature.

3. Results

The model has been extensively validated using var-
ious types of experimental data including vapor–liquid
equilibria, osmotic and activity coefficients, solubility of
solids, densities, heats of mixing and dilution and various
speciation-related data (pH, acid dissociation constants,
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Table 1
Model parameters that were adjusted for the system H3PO4–H2O

Binary parameters Parameters for solid speciesa

b0 (H+, H2PO4
−) = 58.4714,b1 (H+, H2PO4

−) = −7.59140E−2, b2

(H+, H2PO4
−) = −15075.4

�G◦
f (H3PO4(s)) = −267518.2,S◦ (H3PO4(s)) = 25.4659

c0 (H+, H2PO4
−) = −125.349,c1 (H+, H2PO4

−) = 0.208888,c2 (H+,
H2PO4

−) = 28700.0
�G◦

f (H3PO4·0.5H2O) = −297124.8,S◦ (H3PO4(s)·0.5H2O) = 32.1535

b0 (H3PO4
0, H2O) = 3.33585,b1 (H3PO4

0, H2O) = −0.48076E−2, b2

(H3PO4
0, H2O) = 3182.88

c0 (H3PO4
0, H2O) = −9.37084,c1 (H3PO4

0, H2O) = 1.55445E−2, c2

(H3PO4
0, H2O) = −196.537

a �G◦
f values are in cal/mol;S◦ values are in cal/(K mol).

Table 2
Model parameters for the system KOH–H2O

Binary parameters Parameters for aqueous species Parameters for solid speciesa

b0(K+, OH−) = 114.442,b1(K+, OH−)
= −0.169401,b2(K+, OH−) = −32644.1

�G◦
f (KOH0) = −87760.0,S◦ (KOH0)

= 73.8611
�G◦

f (KOH(s)) = −92243.1,S◦ (KOH(s))
= 6.3483

c0(K+, OH−) = −229.320,c1(K+, OH−)
= 0.357371,c2(K+, OH−) = 53697.8

�G◦
f (KOH·H2O) = −154869.1,S0

(KOH·H2O) = 25.1986
b0(KOH0, H2O) = 14.2625,b1(KOH0, H2O)

= 1.65474E−03, b2(KOH0, H2O) = 0.0
�G◦

f (KOH·2H2O) = −213196.9,S◦
(KOH·2H2O) = 41.2806

b0(KOH0, H2O) = −2.35950,b1(KOH0, H2O)
= −1.34905E−02, b2(KOH0, H2O) = 0.0

�G◦
f (KOH·4H2O) = −328719.4,S◦

(KOH·4H2O) = 83.5650
a �G◦

f values are in cal/mol;S◦ values are in cal/(K mol).

etc.). In this study, we report selected results obtained for
systems containing water and inorganic components, which
have been selected so that the available data extend from
dilute aqueous solutions to pure solutes or mixtures without
any water. Model parameters for two representative systems
(H3PO4+H2O and KOH+H2O) are given isTables 1 and 2.

Figs. 1 and 2show the representation of phase equilibria
for the H3PO4 + H2O mixture, which provides a classical
example of a binary system with complex speciation and
phase behavior. It was assumed that this system contains
the H+, PO4

3−, HPO4
2−, H2PO4

− and H3PO4
0 species.

The standard-state properties for these species were calcu-
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Fig. 1. Calculated and experimental vapor pressures in the H3PO4–H2O
system. The symbols represent the data of Kablukov and Zagwosdkin
[17], Kasbekar[18] and MacDonald and Boyack[19].

lated from the Helgeson–Kirkham–Flowers equation using
the parameters reported by Shock and Helgeson[13]. Al-
though, there is some evidence in the literature for the ex-
istence of polynuclear phosphorus species in H3PO4, they
were not included since they are not necessary for reproduc-
ing phase equilibria and pH.Table 1lists the parameters that
were determined to be most significant and were, therefore,
adjusted on the basis of experimental data. The parameters
shown inTable 1are defined byEqs. (6) and (7). As shown
in Fig. 1, the vapor pressure of the H3PO4–H2O mixtures
is reproduced with good accuracy in the full concentration
range.Fig. 2shows the results of calculating the solubility of
three solids that may precipitate in this system, i.e. H3PO4(s),

0
10
20
30
40
50
60
70
80
90

100

-30 -20 -10 0 10 20 30 40 50

t / C

H
3P

O
4,

 w
ei

g
h

t %

Ice

H3PO4. 0.5H2O

H3PO4

Fig. 2. Calculated and experimental solubilities of solids in the
H3PO4–H2O system. The symbols show the data of Ross and Jones[20],
Smith and Menzies[21] and Grube and Staesche[22].
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Fig. 3. Calculated and experimental solubilities of solids in the binary
systems NaH2PO4+H2O and Na2HPO4+H2O. The symbols denote data
taken from Linke and Seidell[23].

H3PO4·0.5H2O, and ice. The hydrate H3PO4·0.5H2O forms
a congruently melting solid phase, which is accurately re-
produced by the model. For calculating the solubilities of
the solids, it was necessary to adjust the reference values of
the Gibbs energy of formation (�G◦

f (298.15 K)) and en-
tropy (S◦) of the solid phases while using calorimetrically
determined heat capacities for these phases. This procedure
is generally used since it ensures that solid–liquid equilibria
are correctly reproduced in wide temperature ranges together
with other properties that are influenced only by liquid-phase
parameters (such as VLE, pH or heats of dilution).

One of the most important features of a thermodynamic
model is its ability to predict the properties of complex,
multicomponent systems using parameters derived from ex-
perimental data for simpler (usually binary) systems. To ex-
amine the predictive character of the new model, calcula-
tions have been performed for sodium and potassium phos-
phates.Fig. 3 shows the calculated solubilities in the bi-
nary systems NaH2PO4–H2O and Na2HPO4–H2O. Fig. 4
shows analogous solubility relationships for potassium salts.
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Fig. 4. Calculated and experimental solubilities of solids in the binary
systems KH2PO4+H2O and K2HPO4+H2O. The symbols represent data
taken from Linke and Seidell[23], Selva[24] and Marshall et al.[25].
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The symbols denote experimental data from Babenko and Vorobieva[26],
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In both cases, the model parameters were determined using
VLE and caloric data as well as solubility data. Then, the
parameters were used to predict the solubilities in the mixed
system NaH2PO4–KH2PO4–H2O. As shown inFig. 5, the
solubilities in this system are predicted essentially within
the scattering of experimental data.

The model is also capable of reproducing solubilities
in systems in which water is not the dominant solvent
or is absent altogether. An example of such a system is
shown inFig. 6, which illustrates the solubility of FeSO4 in
H2SO4–H2O mixtures ranging from pure water to pure sul-
furic acid. In this case, the SLE behavior is quite complex
with a solubility maximum in concentrated H2SO4 solutions
and various hydrated forms of FeSO4, which precipitate
depending on the H2SO4 content of the solutions.Fig. 7
shows the calculated and experimental solubilities in the
ternary system (NH4)2SO4–H2SO4–H2O over a substantial
temperature range. In contrast to the FeSO4–H2SO4–H2O
system, an increase in the H2SO4 concentration does not
drastically reduce the solubility of the salt. However, the
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Fig. 6. Calculated and experimental solubilities of FeSO4 in H2SO4+H2O
mixtures at 40◦C (lower lines) and 60◦C (upper lines). The symbols
represent experimental data from Linke and Seidell[23] and Silcock[29].
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(NH4)2SO4+H2SO4+H2O. The symbols denote experimental data from
Linke and Seidell[23].

solubility behavior is very complex with (NH4)2SO4(s) pre-
cipitating in water-dominated solutions, NH4HSO4(s) pre-
cipitating in sulfuric acid-dominated solutions and a double
salt (NH4)2SO4·NH4HSO4(s) forming at intermediate con-
centrations. These phenomena are accurately reproduced by
the model.

It is also of interest to analyze the effect of speciation on
the computation of thermodynamic properties. In the case of
systems such as H3PO4–H2O or various weak electrolytes,
there is an obvious need to take into account various species
that are in chemical equilibrium. However, the properties of
many electrolyte systems can often be reproduced equally
well with or without explicitly treating speciation[5]. At
the same time, it is well known that strong electrolytes be-
come predominantly ion-paired at high temperatures[16].
Although the applicability range of this model does not ex-
tend to the temperatures at which salts become primarily
ion-paired (i.e. above ca. 300◦C), a correct limiting behavior
at high temperatures should be expected. To investigate this,
calculations have been performed for several strong elec-
trolytes by either including or excluding the ion pairs. The
KOH–H2O system has been selected as an example. The
calculations have revealed that all properties, except heat
capacity, can be reproduced with identical accuracy with or
without the KOH0 species. This is shown inFigs. 8–11for
vapor pressures, osmotic coefficients, heats of dilution and
solid solubilities. However, the parameters determined from
these properties can predict the heat capacity above 200◦C
only when the KOH0 species is included. This is shown in
Fig. 12. The solid lines are the predictions when the KOH0

species is included while the dashed line at 300◦C represents
the predictions when it is not included. The dramatic effect
of including the ion pair is evident only well above 200◦C.
At such temperatures, the contribution of the ion pair to
heat capacity overwhelms the contribution of ions. If the ion
pair is neglected, the predicted heat capacities may even be-
come negative (which is physically unrealistic) because the
increasingly negative contributions of standard-state proper-
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Fig. 8. Calculated and experimental vapor–liquid equilibria in the system
KOH–H2O. The experimental data are from Mashovets et al.[30].
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Fig. 9. Calculated and experimental osmotic coefficients in the system
KOH+H2O. The points denote the values reported by Li and Pitzer[31].

ties of individual ions (cf.Eq. (8)after differentiating with
respect to temperature) cannot be compensated by the posi-
tive contribution of the solution nonideality. When the KOH0

ion pair is taken into account, all properties can be accu-
rately represented at temperatures up to 300◦C.
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KOH+H2O at 25◦C. The experimental data are from Wagman et al.[35].
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Fig. 12. Prediction of heat capacities of KOH+ H2O solutions in cases
when the KOH0

(aq) ion pair is included (solid lines) and when it is
excluded (dotted line). The dotted line is shown only for 300◦C because
the predictions with and without KOH0(aq) coincide at lower temperatures.
The experimental data are from Puchkov et al.[36].

4. Conclusions

A recently developed mixed-solvent electrolyte model has
been applied to calculate phase equilibria and other thermo-
dynamic properties of multicomponent solutions containing
salts, acids and bases in very wide concentration ranges. The
model combines an excess Gibbs energy formulation with
comprehensive speciation calculations. It accurately repre-
sents multiple properties including vapor–liquid equilibria,
osmotic coefficients, solid–liquid equilibria, enthalpies of di-
lution, heat capacities and pH. The model is valid for aque-
ous systems ranging from infinite dilution to molten salts or
pure acids at temperatures from the freezing point to 300◦C.
In particular, the model has been shown to be very useful
for reproducing complex solid–liquid equilibrium diagrams,
which may involve multiple hydrates, eutectic points formed
by salt hydrates and ice, double salts, congruently melting
solid phases, etc. It has been determined that the treatment of
speciation plays an important role for the simultaneous rep-

resentation of various properties. For example, phase equi-
libria for typical strong electrolytes can be reproduced with
or without taking into account the formation of ion pairs,
which increases in importance as temperature rises. How-
ever, a physically reasonable treatment of ion pairing is im-
portant for the simultaneous representation of caloric prop-
erties and phase equilibria.
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